Future Directions in RCR
Facts and Myths

Brian J. Cole, MD, MBA
Professor
Departments of Orthopedics/Anatomy & Cell Biology
Team Physician, Chicago White Sox and Bulls

Anatomic Failure

- Early = Failure to Heal
- Late = Re-Tear
- Multi-Factorial
 - Anchor from bone
 - Suture from tendon
 - Tendon from bone

Anatomic Failure

- 10 – 90%
- Associations
 - #1 Size
 - #2 Chronicity

Pain relief and functional return can occur in the face of anatomic failure

Prevention
Reduced Tension

- Capsular Release
- Side to Side
Prevention

DR/TOE

<table>
<thead>
<tr>
<th>Single Row</th>
<th>Double Row</th>
</tr>
</thead>
<tbody>
<tr>
<td>275N-300N</td>
<td>300-350 N</td>
</tr>
<tr>
<td>No footprint</td>
<td>Footprint</td>
</tr>
<tr>
<td>Gap formation</td>
<td>Resistance to shear</td>
</tr>
<tr>
<td></td>
<td>Minimal “gap formation”</td>
</tr>
</tbody>
</table>

TOE

<table>
<thead>
<tr>
<th>350-400 N</th>
<th>Footprint</th>
<th>Resistance to shear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal “gap formation”</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intervention

- **ECM Scaffolds**
- **Synthetics**
- **Growth Factors**
- **Other**

Biologics “101”

- **Normal RC Insertion**
 - Unmineralized FC → Mineralized FC → Bone
- **RC Healing**
 - Fibrovascular Scar
- **Patches** promote material properties
- **GF** improve structural properties
 - Increased cellularity and scar tissue volume at repair site

Scaffolds

- **ECM Scaffolds**
 - Augmentation not bridge
 - Allograft or Xenograft
 - Architecture
 - Acellular
 - Crosslinked
 - Collagen (Types I,II,III,IV)
 - Elastin
 - CS:PG
 - GF (FGF-2, VEGF)
- **ECM Scaffolds**
 - Allografts
 - GraftJacket™
 - Dermis
 - Freeze Dried
 - SS/IS
 - Fresh Frozen
 - Soft Tissue
 - Allopatch™
 - Fascia Lata

510K Class II: “Product X is intended for reinforcement of soft tissues that are repaired by suture or suture anchors, during tendon repair surgery including reinforcement of rotator cuff, patellar, Achilles, biceps, or quadriceps tendons”
ECM Scaffolds

Xenografts
- **Restore®** • Porcine SIS
- Permacol ZCR™ • Porcine Dermis
- TissueMend® • Fetal Bovine Dermis
- CuffPatch™ • Porcine SIS
- OrthoADAPTM • Equine Pericardium

Synthetics
- Synthasome RCR Device
 - PLA/PGA
- Artelon® Sport Mesh
 - Polyurethane Urea
- Biomerix RCR Patch®
 - Polyurethane
- Gore-tex

Outcomes Pre-Clinical

Pre-Clinical Outcomes

- **Tissue Engineered Rotator Cuff Tendon Using Swine Small Intestine Submucosa in Canines**
 - Dejardin LM, Arnoczky SP, Ewers BJ et al

- **Load (mean ± sd - N)**
 - Control: 0, 3, 6 months
 - SIS: 0, 50, 100, 150, 200, 250, 300

- **Sham**

SEM image of patch material

Collagen fibers from SIS infiltrating patch

Outcomes Pre-Clinical

- **Polyurethane scaffold mesh in ovine chronic tear**
- **12 weeks post-op**
 - Increased force to failure compared to non-augmented repairs (74.2%)
 - Increased stiffness (55.4%) and global displacement at failure (21.4%)

Outcomes Pre-Clinical

- **Polycarbonate polyurethane patch for RTC repair**
- **Rat RTC repair model (n = 12)**
- **6 weeks post-op**
 - No histologic evidence of an inflammatory reaction
 - Tissue in-growth noted in 79.9% of specimens

SEM image of patch material

Collagen fibers from SIS infiltrating patch

Outcomes Pre-Clinical

- **Woven poly-L-lactic acid graft in cadaver**
- **Compared to non-augmented repairs**
 - Yield load: 56-92%
 - Ultimate load: 56-76%
 - No change in initial stiffness

Compared to non-augmented at time zero
- 23% in ultimate load
- No increase in stiffness
- At 12 weeks post-op augmented repairs had significantly
 - Less retraction
 - Greater cross-sectional area
 - Higher ultimate load (35%)
 - Higher stiffness (28%)
Prospective evaluation of porcine dermal collagen implant to augment massive RTC tear
- 10 patients mean age of 66 years (range 46-80)
- Significant improvements seen w respect to
 - Pain
 - Abduction power
 - ROM
- Post-op Ultrasound/MRI at mean of 4.5 years
 - Intact grafts in 80%
 - 2 cases of graft detachment

Outcomes

Clinical

Implantation of a Polyurethane Patch for RC Repair
Augmentation
Encalada I and Cole BJ

Conclusions

Scaffolds

- Is there a need?
- Biology drives failure
 - NOT A GAP FILLER
- Arthroscopically challenging
- Cost $$
- Data to date…not convincing
- Impossible to recommend one over another

Synthetic and Permanent = Paradigm Shift

Growth Factors

ligand (GF)

recycled degradation

bioactive

nucleus

transcription: DNA → mRNA
translation: mRNA → protein

Time, Dose and Delivery Dependent
Growth Factors

Cytokines that induce mitosis, ECM production, neovascularization, cell maturation and differentiation.

<table>
<thead>
<tr>
<th>GF</th>
<th>Activity Phase</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGF-1</td>
<td>Inflammation, proliferation</td>
<td>Promotes proliferation and migration of cells, stimulates matrix production</td>
</tr>
<tr>
<td>TGF-β</td>
<td>Inflammation</td>
<td>Regulates cell migration, proteinase expression, fibronectin-binding interactions, termination of cell proliferation, stimulation of collagen production</td>
</tr>
<tr>
<td>VEGF</td>
<td>Proliferation, remodeling</td>
<td>Promotes angiogenesis</td>
</tr>
<tr>
<td>PDGF</td>
<td>Proliferation, remodeling</td>
<td>Regulates protein and DNA synthesis at injury site, regulates expression of other growth factors</td>
</tr>
<tr>
<td>bFGF</td>
<td>Proliferation, remodeling</td>
<td>Promotes cellular migration, angiogenesis</td>
</tr>
</tbody>
</table>

Growth Factors

Pre-Clinical

- **Animal Models**
 - Acute vs Chronic repair
 - Collagenase
 - Rat RC Overuse (Soslowsky)
 - Traumatic injury (Flatow)

Pre-Clinical

- **Growth factor treated repairs**
 - Stronger with more organized healing
 - rhBMP-12 in a collagen or HA sponge improved healing

Emerging Technology

- **Autologous PRP to enhance tendon healing**
 - **Methods**
 - Rabbit (n=9) tendon stem cell culture w/o PRP
 - **Results (PRP Effects)**
 - TSC proliferation and differentiation into tenocytes
 - Upregulation of tenocyte-specific genes
 - 103%↑ in TGF-b1 and 8-fold↑ in collagen production
 - **Conclusion**
 - PRP may enhance tendon repair by stimulating TSCs to differentiate into active tenocytes

Emerging Technology

- **Type I collagen w rhPDGF-BB for RCR**
 - **Methods**
 - Sheep RCR (n=60)
 - Groups
 - Suture
 - Suture + Collagen + LD/MD/HD rhPDGF-BB
 - **Results**
 - Dose dependent improvement in biomechanics
 - Tendon repair with better interdigitation of collagen with bone
 - **Conclusion**
 - Type I collagen matrix w rhPDGF-BB significantly enhanced RTC repair in a dose-dependent manner
Emerging Technology

- MSCs transduced with Scleraxis (drives tendon and cartilage development) to enhance RCR

Methods

- MSCs vs Scleraxis transduced MSCs in Rat RCR (n=60)

Results

- Increased cartilage formation with Scleraxis
- No differences in collagen organization
- Improved biomechanics

Conclusion

- MSCs expressing Scleraxis helps regenerate FC tendon-bone insertion site during RTC repair

Blood Derived GF

Pre-Clinical

The effect of fibrin clot on healing rat supraspinatus tendon defects

Clinical

Comparison of Surgically Repaired Achilles Tendon Tears Using Platelet-Rich Fibrin Matrices

No effect on tendon healing except at 3 weeks where decreased material properties where demonstrated

Coehet of 6 patients w/ RTS quicker and smaller x.s. area of Achilles by U/S compared to cohort w/o PRP

Blood Derived GF

Poster 11

Bone Marrow-Derived Mesenchymal Cells Transduced with Scleraxis Improve Rotator Cuff Healing in a Rat Model

Laurencin C, Quak H, New York, NY; David Kemper MD, Evanston, IL; Jonathan D. Reher MD, New York, NY; Scott A. Nachman MD, New York, NY, NY

PRP...its much more than platelets

Platelets and WBCs The Good and Bad

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Platelets (fold change)</th>
<th>WBC (fold change)</th>
<th>RBC reduction (%)</th>
<th>Platelet/WBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACP (Arthrex)</td>
<td>2.3</td>
<td>0.09</td>
<td>99</td>
<td>800</td>
</tr>
<tr>
<td>GPS II (Biorx)</td>
<td>8.1</td>
<td>5.4</td>
<td>80</td>
<td>51</td>
</tr>
<tr>
<td>PRP Human (Harvest Tech/Symphony)</td>
<td>7.6</td>
<td>2.5</td>
<td>52</td>
<td>61</td>
</tr>
<tr>
<td>PRP Equine (Harvest Tech/Symphony)</td>
<td>4.5</td>
<td>1</td>
<td>99</td>
<td>60</td>
</tr>
<tr>
<td>Magellan (Medtronic)</td>
<td>7.5</td>
<td>3.2</td>
<td>40</td>
<td>84</td>
</tr>
</tbody>
</table>

* Primarily a function of neutrophils

McCarrel & Fortier, JOR, 2010
Conclusions

Growth Factors

- Goal: improve local biology (FC) at insertion
- Many questions
- Timing
- Carrier
- Cost $$
- Data to date…very little

Other Modalities

Gene Therapy

- In Vivo: Direct injection of the vector
- Ex Vivo: Harvest cells, transduce with vector, re-administer cells into repair site

Other Modalities

Embryonic vs Mesenchymal (Adult) Stem Cells

Embryonic: Totipotent stem cells (pink) are capable of three germ lineages.
Adult: Multipotential progenitors (blue and green) yield multiple limbs within a single germ lineage.

Other Modalities

Gene Therapy

- In Vivo: Direct injection of the vector
- Ex Vivo: Harvest cells, transduce with vector, re-administer cells into repair site

Other Modalities

Sutures dipped in GDF-5 resulted in similar biomechanics with improved histology
Conclusion

So many variables….

- Need
- Cost
- Timing
- Delivery

Ultimate Goal: Reversing the irreversible and normalizing the tendon bone interface creating material property changes in the tendon (and muscle)….we are just not there yet

THANK YOU